Ch. 9 Atomic Physics

References:

1. Young & Freedman, "University Physics", 13th ed. Ch. 41

2. Halliday et al., "Principles of Physics", 9th ed. Ch. 39, 40

Outline

9.1 The Hydrogen Atom9.2 The Zeeman Effect9.3 Electron Spin9.4 Many-Electron Atoms9.5 X-Ray Spectra

9.1 The Hydrogen Atom

Recall: Schrödinger equation in spherical coordinates:

$$-\frac{\hbar^{2}}{2m}\left\{\frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}(r\psi) + \frac{1}{r^{2}\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right]\right\} + U\psi = E\psi$$
where $U(r) = -\frac{1}{4\pi\epsilon_{0}}\frac{e^{2}}{r}$
Nucleus, charge +e, at the origin

The problem can be solved by separation of variables. We shall only outline the procedure and summarize the results:

Let
$$\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$$

Schrödinger equation => 3 separate equations

$$\frac{d^{2}\Phi}{d\phi^{2}} + m_{l}^{2}\Phi = 0 \qquad (Eq.1)$$

$$\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \left[l(l+1) - \frac{m_{l}^{2}}{\sin^{2}\theta}\right]\Theta = 0 \qquad (Eq.2)$$

$$\frac{1}{r^{2}}\frac{d}{dr}\left(r^{2}\frac{dR}{dr}\right) + \left[\frac{2m}{\hbar^{2}}\left(\frac{e^{2}}{4\pi\epsilon_{0}r} + E\right) - \frac{l(l+1)}{r^{2}}\right]R = 0 \qquad (Eq.3)$$

where l and m_i are constants

1. (Eq.1) =>
$$\Phi(\phi) = A e^{i m_l \phi}$$

The wave function must be single value at a given point:

$$\Rightarrow \Phi(\phi+2\pi)=\Phi(\phi)$$

$$=> m_l = 0, \pm 1, \pm 2, \dots$$

2. (Eq.2) is called the Legendre's equation and has solutions only if *l* is an integer and satisfies:

$$l \ge |m_l|$$

3. The radial function *R* must approach zero at large *r*. (Eq.3) has solutions if the energy levels satisfy:

$$E_{n} = -\frac{1}{(4\pi\epsilon_{0})^{2}} \frac{me^{4}}{2n^{2}\hbar^{2}} = -\frac{13.6 \text{ eV}}{n^{2}}$$

where the integer $n \ge l+1$

Energy levels of a hydrogen atom:

$$E_{n} = -\frac{1}{(4\pi\epsilon_{0})^{2}} \frac{me^{4}}{2n^{2}\hbar^{2}} = -\frac{13.6 \text{ eV}}{n^{2}} \quad \text{(same as Bohr model)}$$

Principal quantum number *n* :

$$n = 1, 2, 3, \dots$$

Orbital quantum number *l* :

$$l = 0, 1, 2, \dots, n-1$$

Magnetic quantum number m_{i} :

$$m_l = 0, \pm 1, \pm 2, \dots \pm l$$

 $(-l, -l+1, \dots, l-1, l)$

6

Quantization of Orbital Angular Momentum

It can be shown (in a formal QM course) that *l* is related to the magnitude of the orbital angular momentum by

$$L = \sqrt{l(l+1)}\hbar$$
 (l=0,1,2,...,n-1)

The permitted values of the component of *L* in a given direction (e.g., *z*-component) is

$$L_z = m_l \hbar$$
 $(m_l = 0, \pm 1, \pm 2, \dots, \pm l)$

Note:

 $1. l = 0 \implies L = 0$

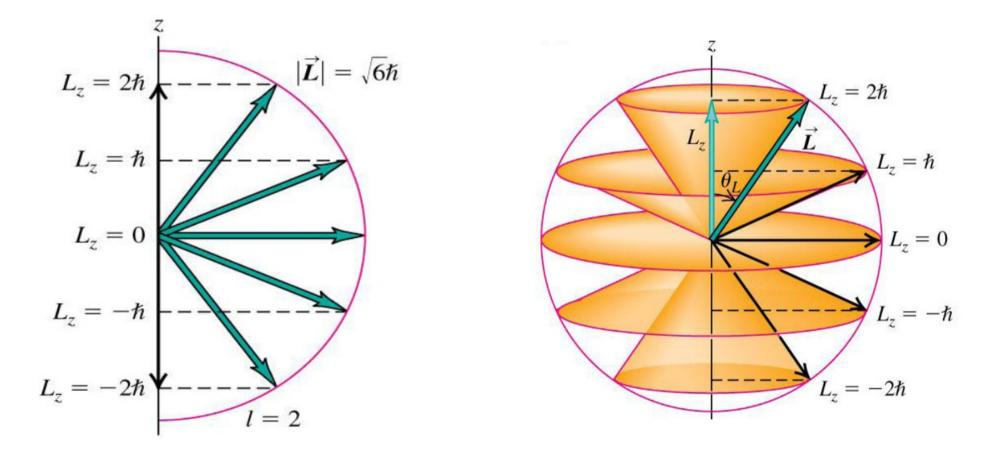
l = 0 state has no orbital angular momentum. The l = 0 wave function is spherically symmetric (depends only on r).

2. $|L_z|$ is always less than L

Example: l = 2

$$L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar \approx 2.45\hbar$$

$$L_z = m_l\hbar = -2\hbar, -\hbar, 0, \hbar, 2\hbar$$



Minimum angle $\theta_L = \cos^{-1}(L_z/L) = 35.3^\circ$ 9

Quantum Number Notation

The wave function depends on n, l, m_{l} :

$$\psi_{nlm_l}(r,\theta,\phi) = R_{nl}(r)\Theta_{lm_l}(\theta)e^{im_l\phi}$$

The energy depends only on n : $E_n = -\frac{13.6 \text{ eV}}{n^2}$

=> In general, for each energy level E_n , there is more than one distant state having the same energy (Degeneracy).

Examples:

1. Ground level (n = 1)

$$=> l = 0, m_l = 0$$

=> a unique wavefunction ψ_{100}

2. First excited level (n = 2)

$$> l = 0 , m_l = 0 l = 1 , m_l = -1, 0, 1$$

$$ψ_{200}$$

 $ψ_{21-1}$, $ψ_{210}$, $ψ_{211}$

The orbital quantum number *l* are often labeled with letters:

$$l = 0: s \text{ states (sharp)}$$

$$l = 1: p \text{ states (principal)}$$

$$l = 2: d \text{ states (diffuse)}$$

$$l = 3: f \text{ states (fundamental)}$$

$$l = 4: g \text{ states}$$

$$l = 5: h \text{ states}$$
... and so on alphabetically

Examples:

- 1. (n=1, l=0) is called 1s state
- 2. (n=4, l=3) is called 4f state

The radial extent of the wave function increases with *n*, and we can speak of a region of space associated with a particular value of *n* as a shell:

n = 1:K shelln = 2:L shelln = 3:M shelln = 4:N shell... and so on alphabetically

Examples:

n	l	m _l	Spectroscopic notation	Shell
1	0	0	1 <i>s</i>	K
2	0	0	2 <i>s</i>	L
2	1	-1, 0, 1	2 p	L
3	0	0	3 <i>s</i>	M
3	1	-1, 0, 1	Зр	M
3	2	-2, -1, 0, 1, 2	3 <i>d</i>	М

For each *n*, different *l* correspond to different subshells.

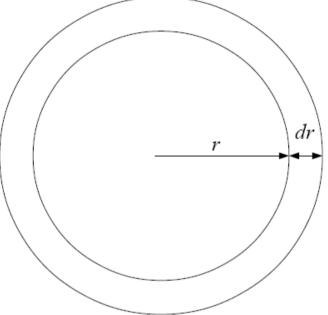
The *L* shell (n=2) contains the 2*s* and 2*p* subshells.

Electron Probability Distributions

Consider the special case where the normalized wave function ψ depends only on *r* (eg, *l*=0 state):

Define: Radial distribution probability

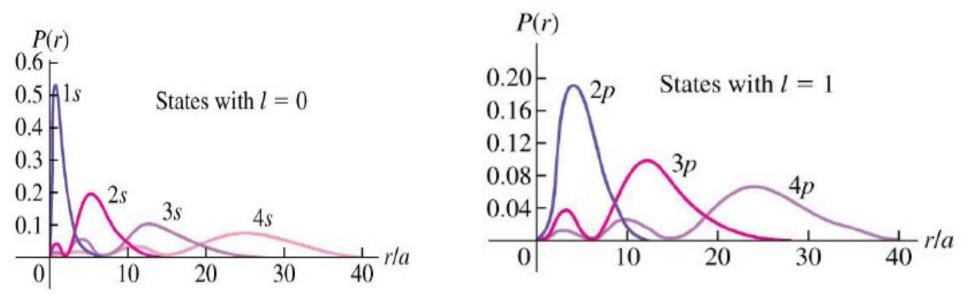
$$P(r)dr = |\psi(r)|^2 dV = |\psi(r)|^2 4 \pi r^2 dr$$



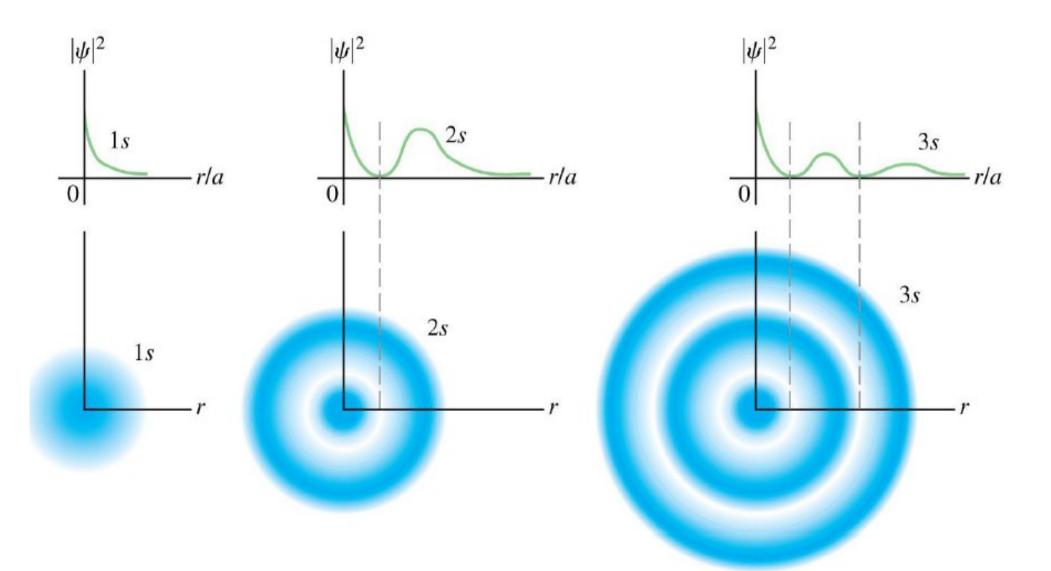
Probability of finding the electron in the range (r, r + dr)

Remark: For ψ that depends also on θ and ϕ , we use the value of $|\psi|^2$ averaged over all angles

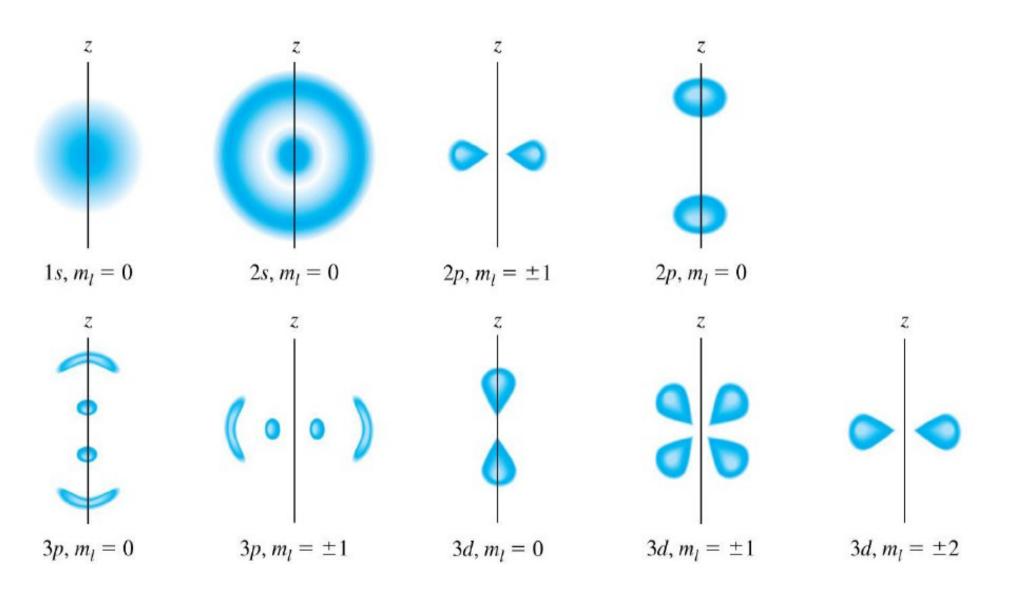
Examples:



$$a = \frac{\epsilon_0 h^2}{\pi m e^2} = 5.29 \times 10^{-11} \,\mathrm{m}$$
 (Bohr radius)

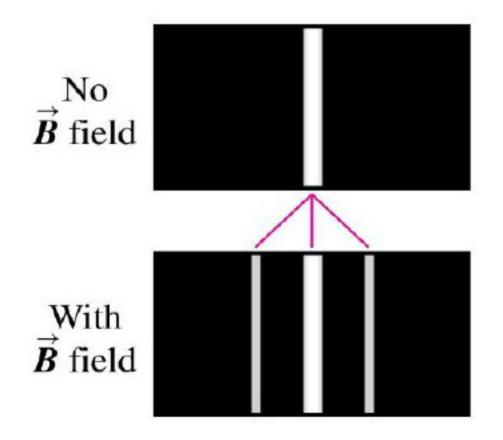


Cross sections of $|\psi|^2$:



9.2 The Zeeman Effect

When an excited gas is placed in a B-field, the field splits individual spectral lines into sets of three lines.



Magnetic Moment of an Orbiting Electron

A current loop defines a magnetic (dipole) moment: $\vec{\mu} = I \vec{A}$

When a magnetic moment is placed in a B-field:

=> Potential energy

$$U = -\vec{\mu} \cdot \vec{B} = -\mu B \cos \theta$$

Note: *U* is min when $\theta = 0$



Now consider the current loop produced by an electron in circular orbit:

$$I = \frac{e}{T} = \frac{ev}{2\pi r} - \frac{ev}{v}$$
 orbit radius

Magnetic
moment
$$\mu = I A = \frac{e v}{2 \pi r} (\pi r^2) = e v r/2$$

Angular momentum L = m v r

$$\Rightarrow \mu = \frac{e}{2m}L$$

Note: The ratio
$$\frac{\mu}{L} = \frac{e}{2m}$$
 is called gyromagnetic ratio.

Note: Electron charge is negative (-e), the current is in a direction opposite to the electron motion

 $\Rightarrow \mu$ and *L* are in opposite directions

$$\vec{\mu} = -\frac{e}{2m}\vec{L}$$

(Magnetic moment associated with electron motion)

Let the B-field be along the +z axis:

$$U = -\vec{\mu} \cdot \vec{B} = -\mu_z B$$

$$\Rightarrow U = -\left(-\frac{e}{2m}L_z\right)B$$

Recall: Quantization of angular momentum

=>
$$L_z = m_l \hbar$$
 $(m_l = 0, \pm 1, \pm 2, ..., \pm l)$

$$U = m_l \frac{e\hbar}{2m} B = m_l \mu_B B$$

(Orbital magnetic interaction energy)

where $\mu_B \equiv e \hbar/2 m$ (Bohr magneton)

The B-field shifts the energy of each orbital state by:

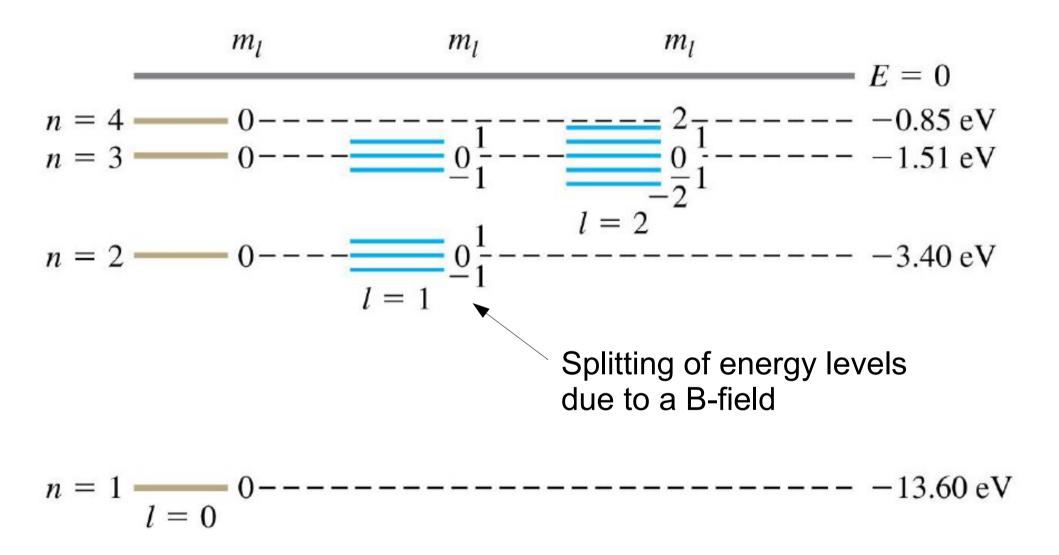
$$U = m_l \mu_B B$$
 $(m_l = 0, \pm 1, \pm 2, ..., \pm l)$

For each *l*, there are (2*l*+1) states. Without the B-field, they have the same energy (ie, they are degenerate).

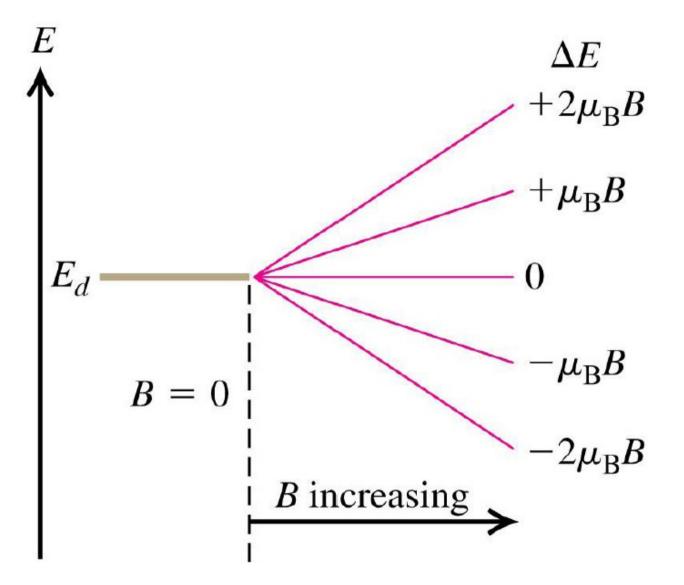
In a B-field, they are split into (2/+1) distinct energy levels; adjacent levels differ in energy by

$$\Delta U = \mu_B B$$

Energy levels for hydrogen:



Example: *d* state (*l*=2)



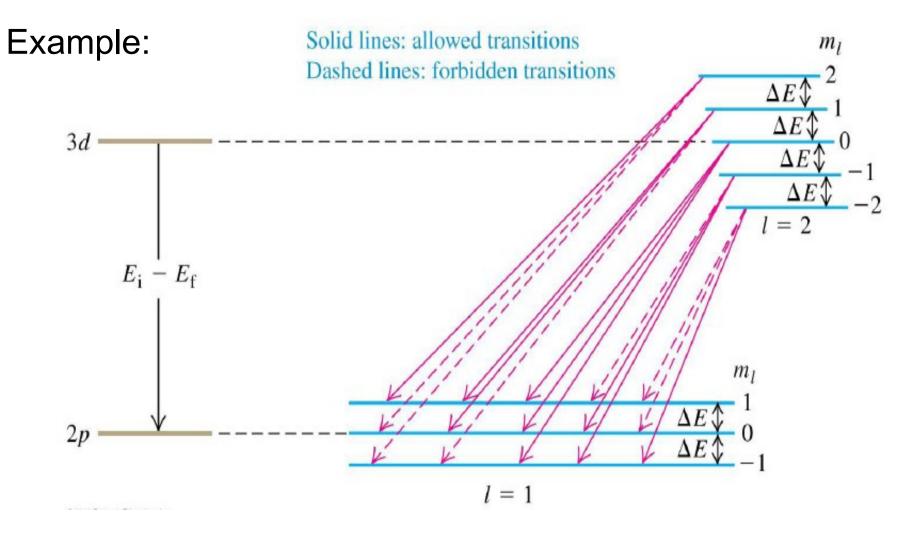
Selection Rules

Initial State (n, l, m_l) Final state (n', l', m_l')

Not all transitions from initial to final states are allowed because of a restriction associated with conservation of angular momentum.

$$\Delta l = \pm 1$$
$$\Delta m_l = 0, \pm 1$$

Selection rule



The allowed transitions => only 3 possible photon energies

Note: The splitting of a spectral line into 3 components due to the orbital motion of the electron is called normal Zeeman effect.

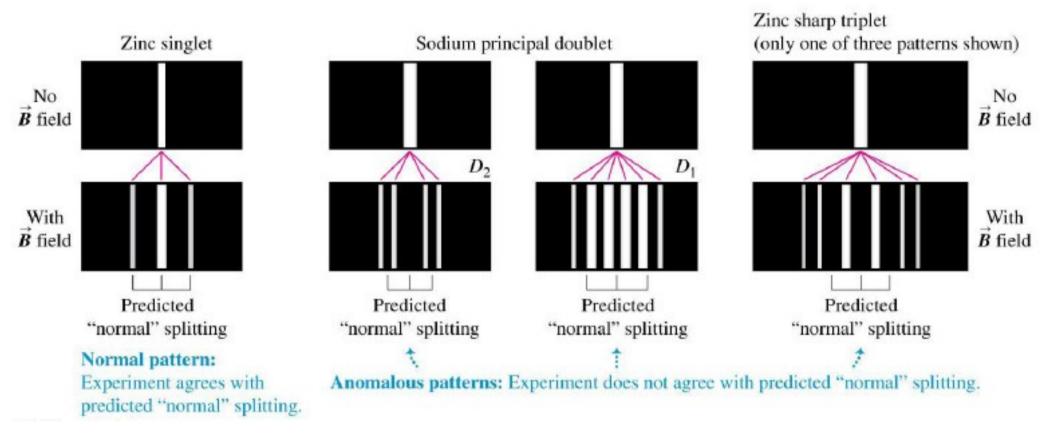
9.3 Electron Spin

Observations =>

- (1) Many spectral lines actually consist of two closely seperate lines
- (2) It is expected that each spectral line should be split into
 3 components in the presence of a B-field (normal Zeeman effect). However, this is not always the case

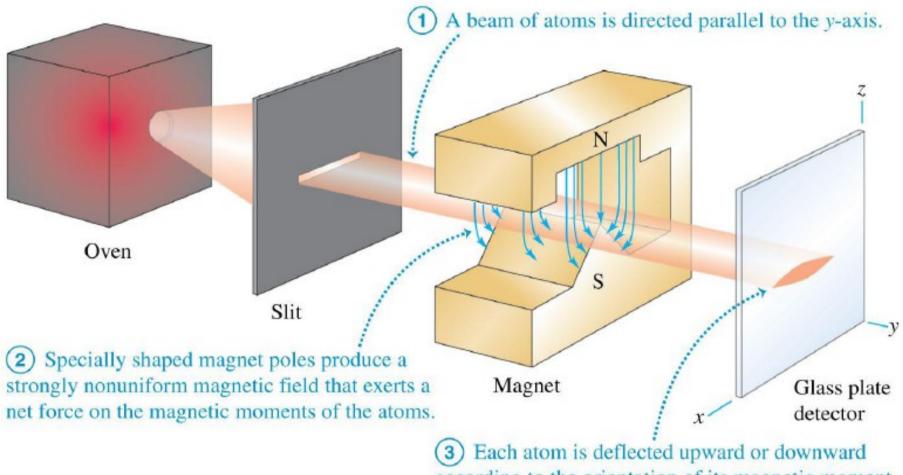
The quantum theory we have developed so far cannot explained these observations!

Normal and anomalous Zeeman effects:



• The Stern-Gerlach Experiment

(Otto Stern & Walter Gerlach 1922)



Spin Quantum Numbers

In 1925, Samuel Goudsmit and George Uhlenbeck proposed that every electron has an intrinsic angular momentum (spin).

Let the spin angular momentum of an electron be \vec{S}

The *z*-component:

$$S_z = \pm \frac{1}{2}\hbar$$

(components of spin angular momentum)

Recall:
$$L = \sqrt{l(l+1)}\hbar$$

Similarly, $S = \sqrt{s(s+1)}\hbar = \sqrt{\frac{3}{4}}\hbar$

where the spin quantum number s = 1/2

To label the state of the electron in a hydrogen atom, we need a new quantum number m_{e} to specify the spin orientation:

$$\Psi_{nlm_lms}$$

The spin angular momentum can have 2s + 1 = 2 orientations:

$$S_z = m_s \hbar$$
 $(m_s = \pm 1/2)$

Note:

$$m_s = +1/2$$
 (spin up); $m_s = -1/2$ (spin down)

Recall: magnetic moment due to orbital motion

$$\vec{\mu}_{\text{orbit}} = -\frac{e}{2m}\vec{L}$$

The associated spin magnetic moment:

$$\vec{\mu}_{\rm spin} = -\frac{2}{4} \frac{e}{2m} \vec{S}$$

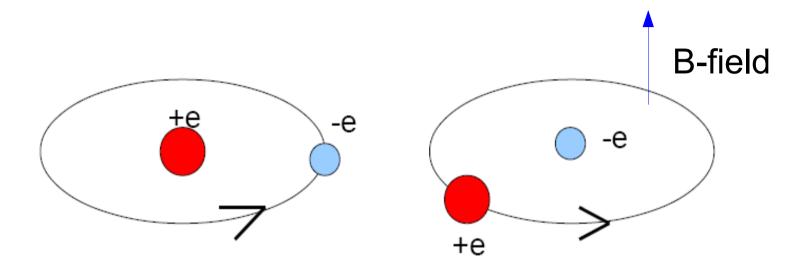
(Experiments show that this is not exactly 2, but 2.0023..., which is predicted by quantum electrodynamics (QED))

=> Total magnetic moment:

$$\vec{\mu}_{\text{total}} = \vec{\mu}_{\text{orbit}} + \vec{\mu}_{\text{spin}} = -\frac{e}{2m} (\vec{L} + 2\vec{S})$$

Spin-Orbit Coupling

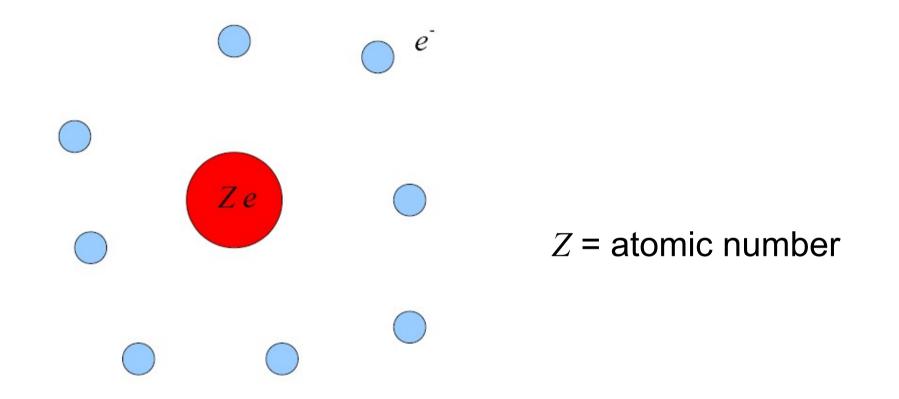
Spin magnetic moment => splitting of energy levels (even when there is no external B-field)



In the frame of the atomic nucleus (proton for H atom)

In the frame of the electron (The B-field is due to the moving proton as seen by the electron)

9.4 Many-Electron Atoms



We can apply the Schrödinger equation to study this general atom, but the complexity of the analysis increases rapidly with Z.

The Central-Field Approximation

- 1. Consider each electron as moving independently in a potential due to the nucleus and the (Z-1) other electrons.
- 2. Consider the (Z-1) other electrons as a spherically symmetric charge cloud around the nucleus

Solve the Schrödinger equation for the one-electron wavefunction:

$$-\frac{\hbar^{2}}{2m}\left\{\frac{1}{r}\frac{\partial^{2}}{\partial r^{2}}(r\psi) + \frac{1}{r^{2}\sin\theta}\left[\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right]\right\} + U(r)\psi = E\psi$$
Spherically symmetric

U(r) does not depend on θ and ϕ

=> same solutions for the angular part as the H atom

=> label a state by
$$(n, l, m_l, m_s)$$

Quantum numbers for the angular-momentum state

The allowed values are the same as the H atom:

$$n \ge 1$$
 , $0 \le l \le n-1$, $|m_l| \le l$, $m_s = \pm \frac{1}{2}$

Note: In general, the energy of a state now depends on both *n* and *l*.

• The Pauli Exclusion Principle

We would expect a gradual change in physical and chemical properties of atoms as Z increases.

But observations suggest properties of elements can vary widely from one to the next!

Example:

Element	Z	Properties
Fluorine (F)	9	Forms compounds by acquiring an extra electron
Neon (Ne)	10	Forms no compounds
Sodium (Na)	11	Forms compounds by losing an electron

In 1925, Pauli discovered the fundamental principle that governs the electronic configuration of multi-electron atoms.

Pauli exclusion principle:

No two electrons can occupy the same quantum-mechanical state in a given system

ie, no two electrons in an atom can have the same values of (n, l, m_l, m_s)

Wolfgang Pauli (1900-1958)

Remark: In general, the exclusion principle applies to half-integral spin particles (Fermions).

Quantum states of electrons in the first four shells:

n	1	m_l	Spectroscopic Notation	Number of States	Shell
1	0	0	1 <i>s</i>	2	K
2	0	0	2s	2] 。	T
2	1	-1, 0, 1	2p	$\begin{bmatrix} -6 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$	L
3	0	0	35	2)	
3	1	-1, 0, 1	3 <i>p</i>	6 } 18	M
3	2	-2, -1, 0, 1, 2	3 <i>d</i>	10	
4	0	0	4 <i>s</i>	2)	
4	1	-1, 0, 1	4p	$6 \qquad 32$	N
4	2	-2, -1, 0, 1, 2	4d	$10 \begin{bmatrix} 52 \\ 52 \end{bmatrix}$	N
4	3	-3, -2, -1, 0, 1, 2, 3	4f	14	

Note: Number of states = max number of electrons allowed

• The Periodic Table

Ground-state electron configuration:

Hydrogen (H; Z = 1): 1s The single electron is in a state $(n=1, l=0, m_l=0, m_s=\pm 1/2)$

Helium (He; Z = 2): $1s^2$

The two electrons are in 1s states, with opposite spins.

K shell is completely filled. Helium is a noble gas.

Note: The chemical properties of an atom are determined mainly by its outermost (valence) electrons.

Lithium (Li; Z = 3): $1s^2 2s$

The 2*s* electron is loosely bound.

It is an alkali metal and forms ionic compound by losing an electron. It has a valence +1.

Beryllium (Be; Z = 4): $1s^2 2s^2$

The two valence electrons fill the *s* subshell of the *L* shell. It is an alkaline earth element.

Element	Symbol	Atomic Number (Z)	Electron Configuration
Hydrogen	Н	1	1 <i>s</i>
Helium	He	2	$1s^{2}$
Lithium	Li	3	$1s^2 2s$
Beryllium	Be	4	$1s^2 2s^2$
Boron	В	5	$1s^2 2s^2 2p$
Carbon	С	6	$1s^2 2s^2 2p^2$
Nitrogen	N	7	$1s^2 2s^2 2p^3$
Oxygen	0	8	$1s^22s^22p^4$
Fluorine	F	9	$1s^2 2s^2 2p^5$
Neon	Ne	10	$1s^2 2s^2 2p^6$
Sodium	Na	11	$1s^2 2s^2 2p^6 3s$
Magnesium	Mg	12	$1s^2 2s^2 2p^6 3s^2$
Aluminum	Al	13	$1s^22s^22p^63s^23p$
Silicon	Si	14	$1s^22s^22p^63s^23p^2$
Phosphorus	Р	15	$1s^22s^22p^63s^23p^3$
Sulfur	S	16	$1s^22s^22p^63s^23p^4$
Chlorine	Cl	17	$1s^22s^22p^63s^23p^5$
Argon	Ar	18	$1s^22s^22p^63s^23p^6$
Potassium	K	19	$1s^22s^22p^63s^23p^64s$
Calcium	Ca	20	$1s^22s^22p^63s^23p^64s^2$
Scandium	Sc	21	$1s^22s^22p^63s^23p^64s^23d$
Titanium	Ti	22	$1s^22s^22p^63s^23p^64s^23d^2$
Vanadium	V	23	$1s^22s^22p^63s^23p^64s^23d^3$
Chromium	Cr	24	$1s^22s^22p^63s^23p^64s3d^5$
Manganese	Mn	25	$1s^22s^22p^63s^23p^64s^23d^5$
Iron	Fe	26	$1s^22s^22p^63s^23p^64s^23d^6$
Cobalt	Co	27	$1s^22s^22p^63s^23p^64s^23d^7$
Nickel	Ni	28	$1s^22s^22p^63s^23p^64s^23d^8$
Copper	Cu	29	$1s^22s^22p^63s^23p^64s3d^{10}$
Zinc	Zn	30	$1s^22s^22p^63s^23p^64s^23d^{10}$

Remark:

Argon (Ar; *Z* = 18):

Potassium (K; Z = 19):

 $1s^2 2s^2 2p^6 3s^2 3p^6$

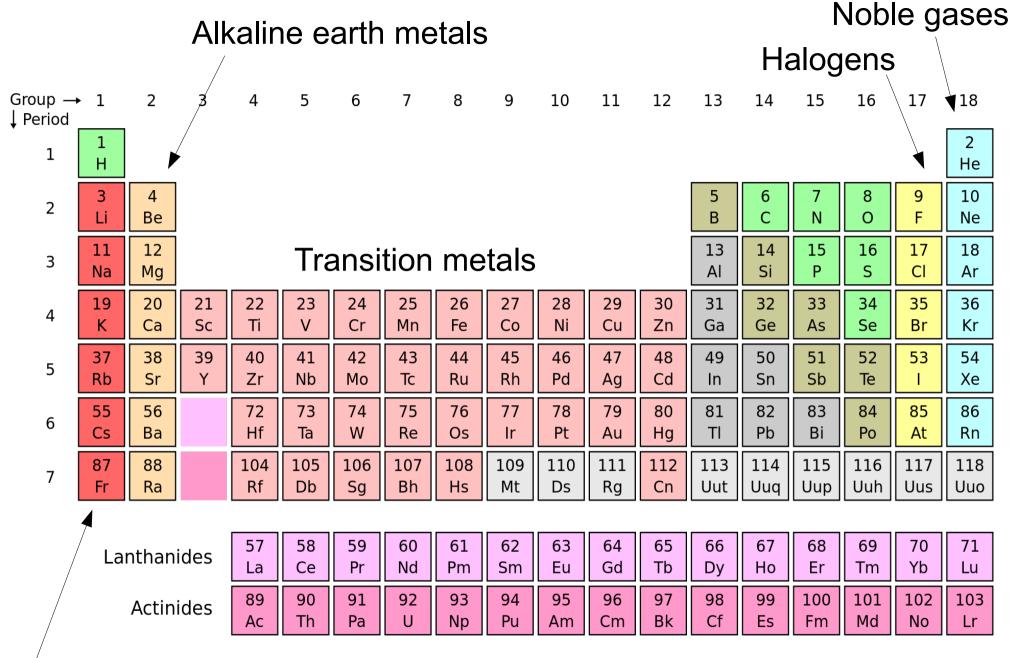
 $1s^2 2s^2 2p^6 3s^2 3p^6 4s$

(the electron goes to 4s state instead of 3d state because the energy is lower)

Calcium (Ca; Z = 20): $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

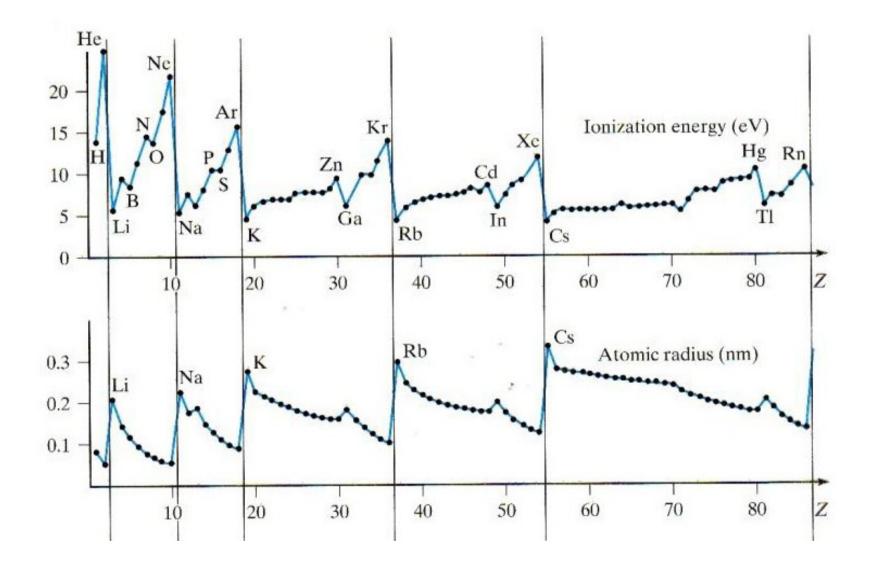
For $Z = 21 \rightarrow 30$: one or two electrons in the 4s subshell and increasing number in the 3d subshell (they form the first transition series)

For $Z = 57 \longrightarrow 71$: one or two electrons in the 6s subshell but only partially filled 4f and 5d subshells



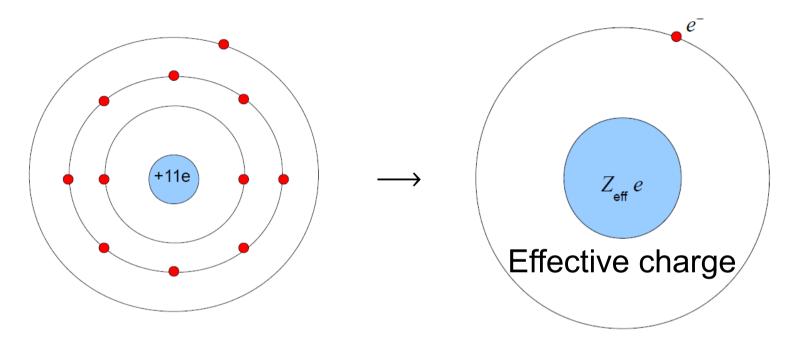
Alkali metals

Evidence for atomic shells:



Screening

Sodium (Na; *Z* = 11):



The charge of the nucleus is screened by the inner electrons.

$$E_n = -\frac{Z_{\rm eff}^2}{n^2} (13.6 \,\,{\rm eV})$$

(Energy levels with screening)

Example: The measured energy of a 3s state of Na = -5.138 eV

$$E_n = -\frac{Z_{\text{eff}}^2}{n^2} (13.6 \text{ eV})$$

=>
$$Z_{eff}^2 = -\frac{3^2(-5.138 \text{ eV})}{(13.6 \text{ eV})}$$

$$Z_{\rm eff} = 1.84$$

The effective charge attracting a 3*s* electron is 1.84 *e*

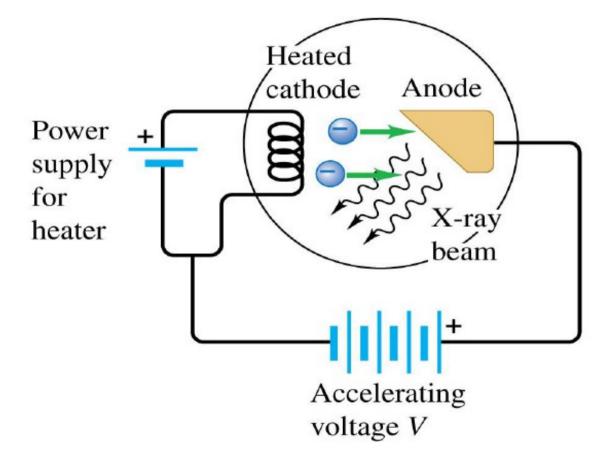
9.5 X-Ray Spectra

X-Ray Production

X-rays were first produced in 1895 by W. Röntgen

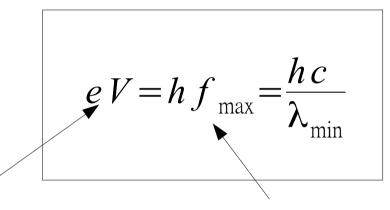
Typical wavelength:

~ 10^{-12} to 10^{-9} m



Two distinct processes are involved in X-ray emission:

1. Bremsstrahlung (German for "braking radiation") Electrons are slowed down or stopped by the target.



K.E. of the electron Max. energy of a X-ray photon

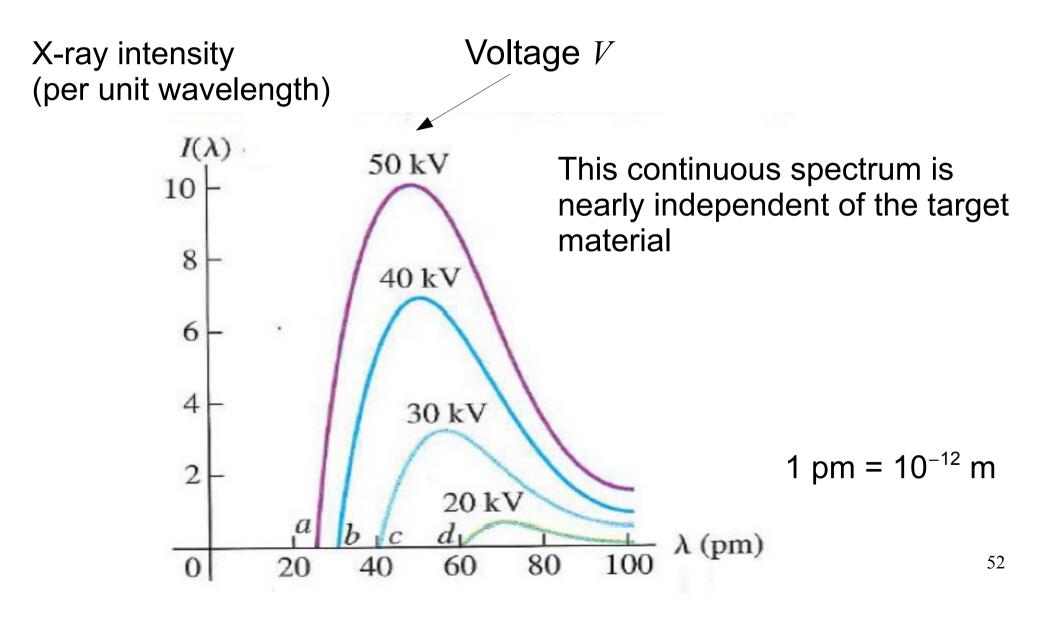
2. The second process gives peaks in the X-ray spectrum at characteristic frequencies that depend on the target material.

Electron's energy is transferred to excite atoms. X-ray may be emitted when the atoms decay back to the ground state.

51

• X-Ray Spectra

Continuous spectrum of X-ray produced by a tungsten target:

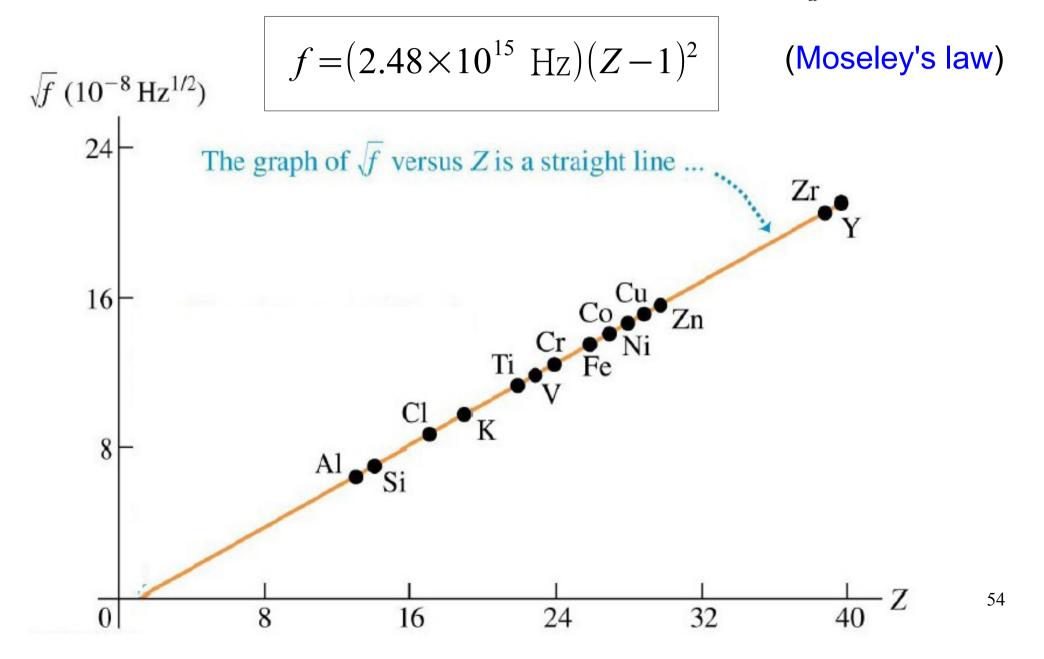


Experiments also found sharp peaks superimposed on the continuous spectrum:

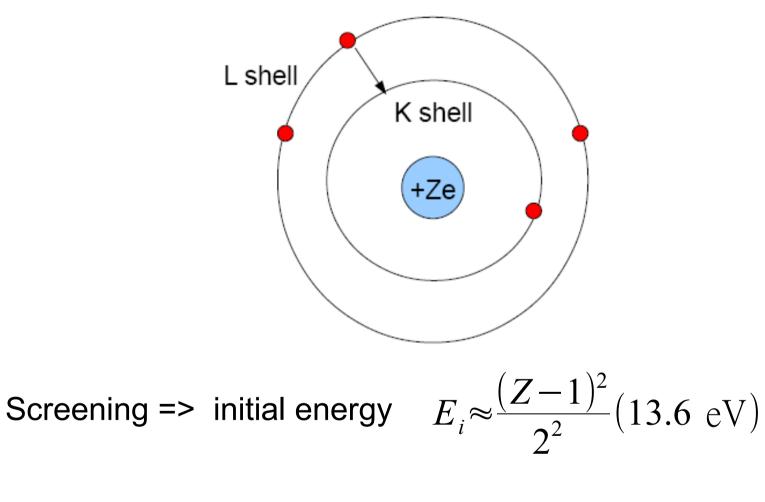


Moseley's Law and Atomic Energy Levels

In 1913, Moseley found that the frequency of the K_{i} line satisfies :



 K_{α} X-ray photon is emitted when an *L*-shell (*n*=2) electron drops down to fill a hole in the *K* shell (*n*=1):



Final energy
$$E_f \approx \frac{(Z-1)^2}{1^2} (13.6 \text{ eV})$$

Energy of K_{α} X-ray photon:

$$E_{\text{photon}} = E_i - E_f$$

 $\approx (Z - 1)^2 (10.2 \text{ eV})$

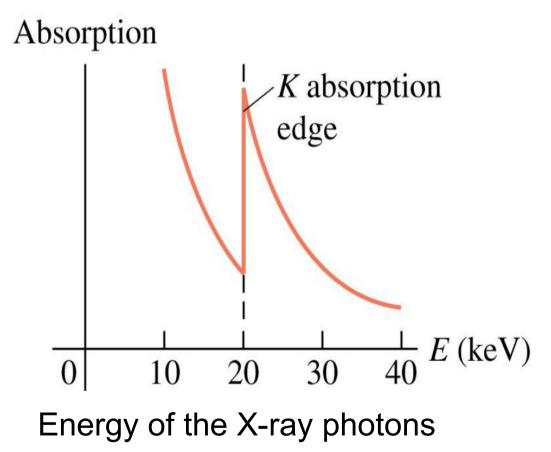
=> Frequency
$$f = \frac{E_{\text{photon}}}{h} = (2.47 \times 10^{15} \text{ Hz})(Z-1)^2$$

Remark: *K* series

 K_{α} line: L shell $(n=2) \longrightarrow K$ shell K_{β} line: M shell $(n=3) \longrightarrow K$ shell K_{γ} line: N shell $(n=4) \longrightarrow K$ shell

X-Ray Absorption Spectra

A beam of X-ray is passed through a slab of molybdenum:



K absorption edge:

Photons with energy above this value can excite an electron from the K shell into an empty state.